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The capacity to identify aspects of meaning that overlap across multiple concepts may

relate to individual differences in the strength of intrinsic connectivity within and between

distinct brain networks supporting semantic cognition. This study examined a semantic

summation task, which tested the capacity to detect weak overlapping aspects of meaning,

in 76 participants who were also scanned with resting-state fMRI. We examined associa-

tions between summation and the intrinsic connectivity of semantically-relevant default

mode and control network regions. These networks are implicated in information inte-

gration and controlled retrieval respectively. We found higher intrinsic connectivity be-

tween default and control networks was associated with better performance in the

summation task. The same pattern of coupling between semantic default mode and con-

trol networks was not associated with more efficient retrieval of individual weak as

opposed to strong associations in an additional cohort of around 200 participants, sug-

gesting this pattern is specific to the summation of multiple concepts, rather than se-

mantic task difficulty. Finally, higher connectivity within the default mode network was

associated with better performance when selecting a word that was strongly-related to a

single probe item, supporting the role of this network in more automatic aspects of se-

mantic retrieval.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Semantic cognition is a fundamental component of mind and

behaviour: it allows us to understand the meaning of words,

objects, places and people that we encounter across different

modalities, and use this knowledge flexibly to guide our

thoughts and actions in a manner that suits the current

context (Jefferies, 2013). Semantic cognition is supported by

the interaction of multiple neurocognitive components that

underpin different aspects of conceptual processing e in

particular, retrieval from a heteromodal conceptual store is

shaped by semantic control processes to suit the task or

context (Lambon Ralph, Jefferies, Patterson, & Rogers, 2017).

Ventrolateral anterior temporal lobe (ATL) is thought to be a

key site for heteromodal conceptual representations (Lambon

Ralph et al., 2017; Patterson, Nestor, & Rogers, 2007; Rogers

et al., 2006), and this region activates together with semantic

control sites, such as left inferior frontal gyrus (IFG) during

semantic tasks (Badre, Poldrack, Pare-Blagoev, Insler, &

Wagner, 2005; Noonan, Jefferies, Visser, & Lambon Ralph,

2013; Wagner, Pare-Blagoev, Clark, & Poldrack, 2001; Whitney,

Grossman,&Kircher, 2009). However, these sites form distinct

networks at rest (Davey et al., 2016; Gonzalez Alam,

Karapanagiotidis, Smallwood, & Jefferies, 2019), suggesting

that flexible patterns of network connectivity may be critical

to successful semantic cognition. In this context, individual

differences in intrinsic connectivity within and between

semantically-relevant networks may show associations with

variations in performance (Mollo et al., 2016; Vatansever et al.,

2017).

While recent research has related individual differences in

connectivity to semantic cognition (for example: Gonzalez

Alam et al., 2019; Krieger-Redwood et al., 2016; Mollo et al.,

2016; Vatansever et al., 2017; Wei et al., 2012), tasks used to

date have not specifically examined the integration of se-

mantic information across multiple weakly-overlapping con-

cepts. Target concepts can often be identified through a strong

association (e.g., ITCH– > SCRATCH), but also through many

weak associations (e.g., CAT, ATTACKS, PAW– > SCRATCH;

Beeman et al., 1994; Thompson, Henshall, & Jefferies, 2016).

Beyond retrieving the meaning of individual words and ob-

jects, what are the underlying neural processes that support

our ability to add together, or summate, meanings of these

individual words to identify conceptual overlap between

items? Identifying the convergence of semantic relations

acrossmultiple items is likely to be a key process in real-world

semantic cognition where items appear in rich contextse and

this is likely to be critical to our capacity to draw inferences,

understand novel metaphors, maintain coherence, and inte-

grate ideas in complex discourse (Beeman, 1998). In order to

make predictions about how performance on the summation

task may be linked to intrinsic neural connectivity, it is

important to consider the behavioural mechanisms that may

contribute to successful completion of this task.

The present study was based on the semantic summation

priming paradigm originally developed by Beeman et al. (1994),

in which participants were presented weakly related probes

(CATeATTACKe PAW) and then named the target ‘SCRATCH’,

presented either to the left or right visual field. This task may
involve some degree of mediated priming (e.g., the word lion

primes stripes, even though the mediating word “tiger” is

missing from the word pair, a process that can occur with

increased semantic distance between words (Kenett, Levi,

Anaki, & Faust, 2017; Kumar, Balota, & Steyvers, 2019). How-

ever, in mediated priming, the probes ‘summate’ onto an un-

ambiguous target, and the first and last word are not related -

they are connected through mediating primes (for example

‘mane e tiger’ is linked by the mediator ‘lion’); in contrast, in

the summation task, the target is related to all of the probes

(i.e., no mediator is necessary to link the words e for example,

cat and scratch are related, even without the other two probes;

Kandhadai & Federmeier, 2008). Furthermore, in some cir-

cumstances competition may arise from other related con-

cepts, and this may require multiple brain networks to work in

concert to achieve the appropriate solution (i.e., integration

across multiple probes, inhibition of inappropriate responses).

This is in line research by De Deyne and colleagues demon-

strating that people are able to relate distant semantic associ-

ates through a process of successive spreading semantic

activation, for example, the connection between athlete and

breath is mediated by connections from athlete e to exercise e

to pant e to breath. They have shown that the way in which

participants associate weakly related concepts is systematic,

even when the words are completely unrelated (De Deyne,

Navarro, Perfors, & Storms, 2016; see also,; Kennet et al., 2017;

Kumar et al., 2019). Therefore, in summation tasks, spreading

activation across weakly associated items, along with some

degree of priming, should facilitate the integration of concepts

onto a single target. However, we used amodified version of the

summation priming paradigm that manipulated the difficulty of

identifying the target, by using distractors with the same degree

of relatedness to each of the probes (Thompson et al., 2016).

Thismeant that participants had to identify the target that was

the result of combining all three probes, while inhibiting other

responses related to all of the probes (Fig. 1). Therefore, par-

ticipants cannot rely on a single probe to identify the

target alone, because the target and distractors are equally

related to the probes, forcing participants to focus on the in-

tegrated meaning to identify the target. We will refer to this

process as ‘controlled semantic summation’: while participants

can rely on spreading activation to relate theweakly-associated

concepts, they also need to engage inhibition processes to

suppress other equally related items, that do not represent the

integrated meaning of all three probes.

This task also finds parallels with tasks commonly used to

study creativity, such as the remote associates task (RAT).

Successful completion of the RAT requires participants to

produce a target following the presentation of three probes

(probes: bass e complex e sleep, target: deep; Mednick, 1968).

As with the summation task, the RAT requires participants to

combine weakly-associated items across multiple probes,

however there are key differences between the two tasks. The

RAT is a production task (while our summation task is recep-

tive), furthermore, in the C-RAT version developed for fast

administration and widely adopted in the fMRI literature, the

probes converge on one unambiguous solution e in our summa-

tion task, the solution is less obvious and is flanked by three

pre-potent distractors. However, despite this, we would expect

some degree of overlap in some of the processes required to

https://doi.org/10.1016/j.cortex.2020.04.032
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Fig. 1 e Word2Vec scores to demonstrate the semantic distance between probes, targets and distractors in the summation

and direct conditions. The relationship between the probes and target in the summation condition could only be achieved

by integrating all three probes. The relationship between each probe word and each distractor was similar to the target,

meaning that participants had to integrate the meaning and inhibit other related choices to find the target. In the direct

condition the target is highly related to the probe, and does not require the integration of multiple probes.
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complete the two tasks, for example, the requirement to

combine multiple primes into an integrated meaning. There-

fore, our experiment may yield some results that overlap with

previous literature examining RAT performance, while also

producing other results that may be more specific to semantic

and/or summation control processes (e.g., inhibition).

Given the degree of control needed to complete the

summation paradigm in the present study, we might expect

involvement of a strongly left-lateralised semantic control

network (SCN). This network is relevant to the identification

of distant associations (Jefferies, 2013; Noonan et al., 2013;

Whitney, Kirk, O'Sullivan, Lambon Ralph, & Jefferies, 2011)

and therefore might be expected to play a critical role in the

identification of weak conceptual overlap between multiple

items. The semantic control network is thought to direct

semantic retrieval so that it is relevant to the current task or

situation (Jefferies, 2013; Lambon Ralph et al., 2017). When

target information is dominant or strongly related to a pre-

viously presented cue, semantic representations are already

configured to produce the correct response and there is little

need for semantic control. In contrast, when the task re-

quires the retrieval of non-dominant features or subordinate

meanings, strongly-encoded yet currently irrelevant infor-

mation must be supressed, and the semantic control

network is engaged. In the summation task, it is necessary to

focus retrieval for each probe word on aspects of knowledge

which overlap with the meaning of the other probe words,

even though this information is non-dominant, and this is
likely to require control. Both task activation and patterns of

intrinsic connectivity suggest the semantic control network

is strongly left-lateralised (Gonzalez Alam et al., 2019;

Noonan et al., 2013).

However, demanding semantic tasks do also activate

bilateral domain-general executive regions of the multiple-

demand network (Duncan, 2010; Duncan & Owen, 2000),

including bilateral inferior frontal sulcus and pre-

supplementary motor area (Davey et al., 2016; Gonzalez

Alam, Murphy, Smallwood, & Jefferies, 2018; Hallam,

Whitney, Hymers, Gouws, & Jefferies, 2016). Despite this, se-

mantic control peaks in left anterior IFG and pMTG fall outside

this multiple-demand network (MDN; see Fig. 3; Badre et al.,

2005; Krieger-Redwood, Teige, Davey, Hymers, & Jefferies,

2015; Noonan et al., 2013; Thompson-Schill, D'Esposito,
Aguirre, & Farah, 1997), and semantic control and domain-

general control regions also show different lateralisation.

The original summation task was constructed by Mark Bee-

man to test the hypothesis that the right and left hemispheres

“probably store similar representations, but differ in how they

dynamically access information” (Jung-Beeman, 2005, p. 513).

More specifically, that the LH accesses fine-grained semantic

coding limited to concepts strongly related to the input, while

the RH employs coarse semantic coding e supporting the

activation of large semantic fields including concepts

distantly related to the input, thereby crucial to summation.

Some evidence for this perspective was provided by their

observation that participants benefitted more from three

https://doi.org/10.1016/j.cortex.2020.04.032
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weakly-related prime words presented to the left visual field

(RH) than to the opposite hemifield. More recently, the RHwas

found to increase activity during insight solutions to verbal

problems (Jung-Beeman et al., 2004),2 reinforcing the possible

involvement of the RH in retrievingmore distant connections.

This theory is also compatible with the Graded Salience Hy-

pothesis which suggests two parallel processing streams

activate simultaneously: a fast bottom-up stream activated by

salience and a slower top-down stream sensitive to both lin-

guistic and extra-linguistic knowledge. Here, all activated

meanings are integratedwith contextual information, and are

retained if instrumental to the intended interpretation (Giora,

1997, 2003, 2008; Giora, Zaidel, Soroker, Batori, & Kasher, 2000;

Peleg, Giora, & Fein, 2008). However, the proposal that RH

supports coarse semantic coding remains highly controver-

sial, with most studies finding stronger semantic activation in

LH, across a wide range of tasks (Davey et al., 2015; Jefferies,

2013; Krieger-Redwood et al., 2015; Lambon Ralph et al.,

2017; Whitney, Kirk, O'Sullivan, Lambon Ralph, & Jefferies,

2012). Furthermore, while creative thought may require the

use of coarse semantic coding, for example, in activating se-

mantic fields distant from the original input, a recent meta-

analysis found that the number of foci in the RH was signifi-

cantly less (173) than in the LH (266; Gonen-Yaacovi et al.,

2013); the RH coarse semantic coding hypothesis is unable to

account for the high degree of LH activation evident across

tasks manipulating semantic and creative cognition.

In addition to control processes, semantically-relevant re-

gions of the default mode network (DMN) are likely to be

relevant to summation. Although this network deactivates in

demanding tasks (Raichle et al., 2001), some DMN regions

show a semantic response, including anterior middle tempo-

ral gyrus and angular gyrus (AG; Binder, Desai, Graves, &

Conant, 2009; Davey et al., 2015; Davey et al., 2016;

Humphreys, Hoffman, Visser, Binney, & Lambon Ralph,

2015). Lateral ATL regions falling within DMN may have a

role in the integration of different features, represented in

distinct brain regions, supporting heteromodal semantic

cognition (Mollo, Cornelissen, Millman, Ellis, & Jefferies, 2017;

Murphy et al., 2018; Visser, Jefferies, Embleton, & Lambon

Ralph, 2012; Zhang, Savill, Margulies, Smallwood, & Jefferies,

2019). This is echoed by Shen, Yuan, Liu, and Luo (2017),

who suggest that the temporal lobes are involved in: novelty

detection and recognition (medial temporal lobe e MTL), se-

lective access to representations (posterior superior temporal

gyrus e pSTG), integration and binding of distributed con-

ceptual representations (aSTG), and extensive semantic pro-

cessing (e.g., maintaining activation of all possible meanings;

anterior Middle Temporal Gyrus - aMTG); all of these temporal

lobe subdivisions (aSTG, pSTG, aMTG and part of MTL) fall

within semantically relevant DMN, and are important aspects

of integrative processing.

Similarly, left AG, a core region within DMN, is implicated

in combinatorial semantics: the ability to combine conceptual
2 Insight solution is characterised by 1) arriving at an impasse
to finding a solution, 2) occurring when people are not even aware
they are thinking of the problem, 3) the solution arising suddenly
4) creative thinking, and 5) an ‘aha’ moment (Jung-Beeman et al.,
2004).
elements into larger entities (Price, Bonner, Peelle, &

Grossman, 2015). For example, Graves, Binder, Desai,

Conant, and Seidenberg (2010) found higher activation in AG

to highly meaningful nounenoun phrases (e.g., LAKE HOUSE)

compared to non-meaningful forms created by flipping the

phrase (e.g., HOUSE LAKE), suggesting this region supports the

comprehension of coherent conceptual combinations (see

also, Lanzoni et al., 2020; Lerner, Honey, Silbert, & Hasson,

2011; Nguyen, Vanderwal, & Hasson, 2019; Pallier,

Devauchelle, & Dehaene, 2011; Pylkk€anen, 2019; Teige et al.,

2018, 2019; Thompson et al., 2007). Similarly, Tyl�en et al.

(2015) found higher activation in DMN regions to coherent

compared to incoherent story episodes, supporting the role of

the DMN in integrative and constructive processes. The loca-

tion of DMN, at the apex of a cortical hierarchy from unimodal

to heteromodal cortex (Margulies et al., 2016), is consistent

with its purported role as an ‘integrational hub’, supporting

the convergence of information from multiple sources into

more complex meanings (Binder & Desai, 2011; Patterson

et al., 2007). These functional characteristics of

semantically-relevant DMN regions may support the concep-

tual integration required in the semantic summation task.

While semantically-relevant regions of DMN in the

absence of constraints from other networks are thought to

underpin the relatively automatic semantic retrieval of

dominant features and associations (Davey et al., 2016;

Humphreys et al., 2015), interactions between DMN and con-

trol processes might be critical to controlled semantic cogni-

tion. Davey et al. (2016) demonstrated that regions of the

semantic control network (left anterior IFG and pMTG) sit at

the nexus of ATL and the multiple-demand network, sug-

gesting that the interaction of these networks (DMN, MDN)

might support our ability to retrieve non-dominant semantic

associations (see also, Jefferies, Thompson, Cornelissen, &

Smallwood, 2019). Accordingly, Shen et al. (2017) suggest

that the pMTG plays an important role in creative thought

through inhibition based on convergence of information from

multiple sources (i.e., from other parts of the temporal lobes),

as well as fusiform gyrus which sits in the MDN for forming

gestalt-like representations. Moreover, Krieger-Redwood et al.

(2016) found that a control-demanding feature-matching task

led to deactivation in a key DMN region, posterior cingulate

cortex (as expected for a ‘task-negative’ region); yet at the

same time, this site showed increased functional connectivity

with dorsolateral prefrontal cortex, within the multiple-

demand network. Further, functional coupling at rest be-

tween posterior cingulate and prefrontal cortex was stronger

for participants who were more efficient at the demanding

semantic task. These findings suggest that DMN is also rele-

vant to controlled forms of semantic cognition through its

communication with control regions. In a similar way,

coupling of DMN and control networks may be associated

with greater ability to summatemeanings to identify a distant

relationship between multiple words.

We examined the association between semantic sum-

mation and intrinsic functional connectivity within and be-

tween defaultmode, semantic control, andmultiple-demand

networks. As this task involves multiple semantic processes

e e.g., not just retrieval but also the integration of concepts

and the inhibition of other equally related associates e we

https://doi.org/10.1016/j.cortex.2020.04.032
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might expect multiple networks to play a role in successful

execution of this task. For example, the left-lateralised se-

mantic control network is important in the retrieval of weak

associations, as well as the inhibition and/or selection

amongst competing alternatives, an important aspect of our

paradigm; however, the task involves a further elemente the

integration of multiple weak associations to determine a

suitable target ewhich could engage the DMN.We used fMRI

to characterise individual differences in intrinsic functional

connectivity in 76 participants, who completed the adapted

controlled semantic summation task outside the scanner

alongside a ‘direct’ retrieval condition which involved a

single strong association (Experiment 1). We examined

variation in connectivity from seeds composed of left-

lateralised semantically-relevant elements of DMN, seman-

tic control, and multiple-demand networks (Fig. 3), in order

to identify patterns of within and between network con-

nectivity associated with performance. We examined

whether performance was associated with greater connec-

tivity only within LH, or also between LH seeds and RH re-

gions. As controlled summation was more demanding than

the ‘direct’ retrieval condition, we additionally assessed

whether patterns of intrinsic connectivity identified in the

first sample of participants could simply be explained by

efficient semantic control, by comparing the retrieval of

weak and strong associations when there was little demand

on semantic summation, using a previously-published

cohort of 200 participants (Experiment 2). Therefore, while

the previous literature has identified brain areas that acti-

vate for processes contributing to controlled semantic sum-

mation, this study sought to further elucidate how network

connectivity relates to the ability to successfully identify a

target as a result of integrating across weakly-related

concepts.
2. Method

This study includes analyses of intrinsic connectivity in two

samples. Experiment 1 assessed how intrinsic connectivity

from semantic DMN and control regions might relate to per-

formance on summation and direct tasks. The purpose of

Experiment 2 was to establish whether the findings for se-

mantic summation reflected connectivity patterns linked to

better performance on harder semantic tasks in general, or if

the results were specific to summation.

We determined our sample size based on participant

availability (i.e., tested as many participants as were willing),

and report all data exclusions, all inclusion/exclusion criteria,

whether inclusion/exclusion criteria were established prior to

data analysis, all manipulations, and all measures in the

study. This study was not pre-registered in a time-stamped,

institutional registry prior to the research being conducted.

2.1. Participants

None of the participants in Experiments 1 or 2 had a history of

psychiatric or neurological illness, drug use that could alter

cognitive functioning, severe claustrophobia, or pregnancy.

All volunteers provided written informed consent and were
debriefed after data collection. Ethical approval was obtained

from Ethics Committees in the Department of Psychology and

York Neuroimaging Centre, University of York. All partici-

pants were right-handed, native English speakers with

normal/corrected vision, and compensated for their time with

payment or course credit.

Experiment 1: Participants who had previously been scan-

ned using a resting-state fMRI sequence at the York Neuro-

imaging Centre were invited to take part. We recruited 83

participants (64 females,mean age¼ 19.7 years, range¼ 18e26

years). Two participants were removed before pre-processing

due to missing resting-state data, and a further three because

we did not have full brain coverage. Another two were

excluded during pre-processing because motion exceeded

.3 mm, invalid scans exceeded 20% and/or there was mean

global signal change of z > 2. The final sample therefore con-

sisted of 76 participants (61 females, mean age ¼ 19.6 years,

range ¼ 18e25 years).

Experiment 2: We analysed data from a large cohort of 207

volunteers recruited from the University of York (137 females,

mean age ¼ 20.21, range ¼ 18e31 years) who completed a

resting-state scan, followed by cognitive and memory tests in

subsequent sessions on different days. These data have been

used in previous studies focused on the lateralisation of se-

mantic cognition (Gonzalez Alam et al., 2019), cortical thick-

ness (Wang et al., 2018b), neurocognitive components of

semantic performance (Vatansever et al., 2017), mind-

wandering (Poerio et al., 2017; Sormaz et al., 2018; Turnbull

et al., 2019; Wang et al., 2017, 2018a), and hippocampal con-

nectivity (Karapanagiotidis, Bernhardt, Jefferies, &

Smallwood, 2017; Sormaz et al., 2017). We excluded sixteen

participants: nine due to missing behavioural data, one due to

missing MRI data, one due to incorrect TR in MRI acquisition,

and four during pre-processing because they exceeded our

motion cut-off of .3 mm, had more than 20% invalid scans

and/or mean global signal change of z > 2. The final sample

size, therefore, consisted of 191 participants (122 females,

mean age ¼ 20.55, range ¼ 18e31 years).

In order to characterise the mean patterns of intrinsic

connectivity for the clusters linked to summation and direct

retrieval in Experiment 1, we also analysed the resting-state

data of a subset (n ¼ 152) of this cohort without a behav-

ioural regressor. We excluded 39 participants from the

Experiment 2 cohort who had also completed the summation

paradigm, to ensure that this subset of participants was a fully

independent sample (see Experiment 1).

2.2. MRI data acquisition

Structural and functional MRI data were acquired for both

experiments using a 3 T GE HDx Excite MRI scanner utilising

an eight-channel phased array head coil tuned to 127.4 MHz,

at the York Neuroimaging Centre, University of York. Struc-

tural MRI acquisition was based on a T1-weighted 3D fast

spoiled gradient echo sequence (TR¼ 7.8s, TE¼minimum full,

flip angle ¼ 20�, matrix size ¼ 256 � 256, 176 slices, voxel

size ¼ 1.13 � 1.13 � 1mm3). Resting-state fMRI data was

recorded from the whole brain using single-shot 2D gradient-

echo-planar imaging (TR ¼ 3s, TE ¼ minimum full, flip

angle ¼ 90�, matrix size ¼ 64 � 64, 60 slices, voxel

https://doi.org/10.1016/j.cortex.2020.04.032
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size ¼ 3 � 3x3mm3, 180 volumes). Participants passively

viewed a fixation cross and were not asked to think of any-

thing in particular for the duration of the scan (9 min). A T1

weighted FLAIR scan with the same orientation as the func-

tional scans was collected to improve co-registration between

subject-specific structural and functional scans

(TR ¼ 2560 msec, TE ¼ minimum full, matrix size ¼ 64 � 64,

voxel size ¼ 3 � 3 x 3mm3).

2.3. Pre-processing

Pre-processing for both experiments was performed using the

CONN functional connectivity toolbox V.18a (http://www.

nitrc.org/projects/conn; Whitfield-Gabrieli & Nieto-Castanon,

2012). Functional volumes were slice-time (bottom-up, inter-

leaved) and motion-corrected, skull-stripped and co-

registered to the high-resolution structural image, spatially

normalised to Montreal Neurological Institute (MNI) space

using the unified-segmentation algorithm, smoothed with a

6 mm FWHM Gaussian kernel, and band-passed filtered

(.008e.09 Hz) to reduce low-frequency drift and noise effects.

A pre-processing pipeline of nuisance regression included

motion (twelve parameters: the six translation and rotation

parameters and their temporal derivatives), scrubbing (all

outlier volumes were identified through the artifact detection

algorithm included in CONN, with conservative settings:

scans for each participant were flagged as outliers based on

scan-by-scan change in global signal above z ¼ 3, subject

motion threshold above 5 mm, differential motion and com-

posite motion exceeding 95% percentile in the normative

sample), and CompCor components (the first five) attributable

to the signal from white matter and CSF (Behzadi, Restom,

Liau, & Liu, 2007), as well as a linear detrending term, elimi-

nating the need for global signal normalisation (Chai,

Casta~n�on, €Ongür, & Whitfield-Gabrieli, 2012; Murphy, Birn,

Handwerker, Jones, & Bandettini, 2009).

All figures were created using BrainNet Viewer (http://

www.nitrc.org/projects/bnv/; Xia, Wang, & He, 2013).
3. Experiment 1

3.1. Semantic summation task procedure

The semantic summation task was adapted from previous

studies (Beeman et al., 1994; Thompson et al., 2016). It was

presented alongside four other tasks which fall outside the

scope of this study. The duration of the full testing session

was approximately 1.5 h. Participants completed the tasks in

the same order (with the summation task as the third of the

five tasks) to reduce the extent to which testing order

contributed to individual differences in performance.

The summation task examined the efficiency with which

individuals could detect weak overlapping patterns of se-

mantic activation to obtain an association between distantly-

related words. In the “summation” condition, participants

were presented with three probe words on screen simulta-

neously, followed by four possible response words. They were

asked to choose the word that related to all three probes. The

other three response options were distractors which were
semantically-related to only one of the probes. For example,

the probes ‘CAT-ATTACK-PAW’ were followed by response

options ‘DOG, DEFEND, FOOT, SCRATCH’. The correct

response is ‘SCRATCH’ because this is the only word which

relates to every probe item. In the “direct” condition, partici-

pants were presented with three words, consisting of two

‘filler’ words (with little meaning, such as NULL) and one

centrally-presented probe. These were followed by four

response options, which were the same as the summation

condition and had the same correct response. Participants

were simply required to choose the word that semantically-

related to the central probe word. For example, ‘NOTHING-

ITCH-NULL’ was followed by the response options ‘DOG,

DEFEND, FOOT, SCRATCH’. The correct response is ‘SCRATCH’

because it is the only word strongly-related to the probe word.

The stimuli were taken from Beeman et al. (1994) and are

provided in Supplementary Materials, as well as an item

analysis for each condition.

The task was organised into two practice blocks, one for

each condition (Direct and Summation), followed by four

experimental blocks, two for each condition. The order of the

conditions was counterbalanced, with equal numbers of par-

ticipants tested on Summation-Direct-Direct-Summation and

Direct-Summation-Summation-Direct sequences. Practice

blocks consisted of 5 trials, while experimental blocks con-

tained 19 trials each. Stimuli were white on a black back-

ground. Before the task commenced, an instruction slide

explained the task to be performed. At the beginning of each

block, a slide indicated the condition and this remained on

screen until the participant pressed a key. In each trial (Fig. 2),

probe words were presented for 1500 msec, followed by the

response options which remained on screen until a response

button press was recorded. Participants indicated their

response using the left, right, up or down arrow keys on the

keyboard. The inter-trial interval was 1000 msec, during

which a fixation cross was presented. In each practice trial,

there was an additional slide after the response, lasting

1500msec, providing feedback. The duration of thewhole task

was 5e8 min. The task was presented using E-prime (Psy-

chology Tools, Inc., Pittsburgh, PA), which recorded reaction

time, and accuracy.

As mentioned in the introduction the summation task

shares some similarities with the RAT.We only have RAT data

for 25 of our 76 participants, but we have included a brief

analysis of the relationship between summation and RAT

performance in our small sub-sample of participants in the

supplementary materials (Figure S6). No significant relation-

ship between the two tasks was found.
3.2. ROI selection

Our seeds were formed from threemaps: 1) DMN, as identified

by Yeo et al. (2011) using a parcellation of resting-state data

from 1000 brains; 2) the semantic control network, as identi-

fied using a functional meta-analysis of tasks manipulating

the control demands of semantic tasks (Humphreys &

Lambon Ralph, 2015; Noonan et al., 2013); 3) domain-general

executive control regions within the multiple-demand

network, identified through a conjunction of multiple hard

http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
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Fig. 2 e Example trial structure for Direct and Summation conditions (left; Experiment 1) and association strength strong

and weak conditions (right; Experiment 2).

Fig. 3 e The default-mode, semantic control and multiple-

demand networks (magenta) overlaid with a semantic

meta-analysis from Neurosynth (blue; Yarkoni et al., 2011)

within the left-hemisphere. Areas of overlap are shown in

violet. Regions of overlap were taken as our seeds, with the

additional step of subtracting semantic control regions

from the default-mode and multiple-demand seeds to

ensure no voxels were contained within more than one

seed map.

c o r t e x 1 2 9 ( 2 0 2 0 ) 3 5 6e3 7 5362
versus easy task contrasts (Duncan, 2010; Fedorenko, Duncan,

& Kanwisher, 2013).

All seed regions included only voxels that fell within a

meta-analytic map for the term “semantic”, generated by

Neurosynth (formed from a meta-analysis of 1031 studies,

downloaded October 2018, http://neurosynth.org/analyses/

terms/semantic/; Yarkoni, Poldrack, Nichols, Van Essen, &

Wager, 2011), in order to identify regions within the broader

DMN and multiple-demand networks that were semantically

relevant. Neurosynth is an automated meta-analysis tool that

associates spatial activation maps with descriptive terms

from the neuroimaging literature. In order to create term-

based meta-analyses, such as the one used in this study

using the term ‘semantic’, Neurosynth uses text-mining tools

to extract high frequency terms taken from the abstract of

neuroimaging articles and associates them with peak co-

ordinates of activation, following certain criteria. In this way,

it can generate ‘reverse inference’ maps associated with a

particular term, such as “semantic”. Thesemaps show regions

that are more likely to be activated for that particular term

than for others. Fig. 3 demonstrates the overlap of the se-

mantic Neurosynth map with each of the three networks

(DMN, semantic control network, and multiple-demand

network).

We removed voxels from the semantic DMN seed if they

were also implicated in semantic control by Noonan et al.'s
(2013) semantic control meta-analysis (resulting in the

removal of 14.0% of voxels from the semantic DMN map).

These voxels were included in the semantic control map. We

also identified semantically-relevant multiple-demand re-

gions that fell outside the semantic controlmeta-analyticmap
(although 70.9% of semantically-relevant MDN voxels were

also in the semantic control network identified by Noonan

et al., 2013, as would be expected). For completeness, we

examined the connectivity of these regions in addition to the

semantic control seed; the results closely resembled those for

http://neurosynth.org/analyses/terms/semantic/
http://neurosynth.org/analyses/terms/semantic/
https://doi.org/10.1016/j.cortex.2020.04.032
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the semantic control network seed and can be found in

Supplementary Materials. The regions of overlap between the

Neurosynth semantic map and the DMN, semantic control

network and MDN were largely in the LH (86.9%, 99.0%, and

94.6% of voxels, respectively). For all three seeds, we removed

the RH voxels, since this allowed us to unambiguously inter-

pret any RH clusters as interhemispheric connectivity. The

resulting LH semantic DMN, semantic control and semantic

MDN seeds captured 23.9%, 18.1% and 10.9% of the left Neu-

rosynth semantic map, respectively.

3.3. Resting-state fMRI analysis

This analysis explored associations between task perfor-

mance and the intrinsic functional connectivity of default

mode and semantic control networks. There were three

functional connectivity seed-to-voxel analyses; one for each

seed (left semantic DMN, left semantic control network, and

left semantic MDN). In a first-level analysis, we computed

whole-brain seed-to-voxel correlations for each of our seeds.

For the second-level analysis, we entered as explanatory

variables (EVs) into a GLM analysis the mean-centred effi-

ciency scores of the summation and direct task conditions

(inversed, such that higher scores indicated better perfor-

mance, with outliers more than 2.5SD away from the mean

imputed to this cut-off), and a nuisance regressor corre-

sponding to mean motion for each participant (measured in

framewise displacement). In all analyses, we convolved the

signal with a canonical haemodynamic response function.We

used two-sided tests to determine significant clusters. We

defined the following contrasts of interest for each seed:

Summation > Direct, Direct > Summation, and the main ef-

fects of each condition. Group-level analyses in CONN were

cluster-size FWE corrected and controlled for the number of

seeds (Bonferoni, p < .017), and used a height threshold of

p < .005).

In order to establish the pattern of mean functional

connectivity for the regions linked to behaviour on the se-

mantic summation task, we used the clusters from the

analysis above as seeds in an independent cohort of 152

participants with resting-state fMRI (a subset of the partic-

ipants from Experiment 2, removing participants who took

part in both experiments). Group-level analyses in CONN

were cluster-size FWE corrected and controlled for the

number of seeds (Bonferoni, p < .017), and used a height

threshold of p < .005. The connectivity maps resulting from

these analyses were uploaded to Neurovault (https://

neurovault.org/collections/6140; Gorgolewski et al., 2015).

Behavioural data analysis files relevant to Experiment 1 and

2 are uploaded to https://osf.io/ehj7b/). The conditions of

our ethics approval do not permit public archiving of the

raw MRI data supporting this study. Readers seeking access

to this data should contact the lead author, Katya Krieger-

Redwood, the PI Professor Beth Jefferies, or the local ethics

committee at the Department of Psychology and York

Neuroimaging Centre, University of York. Access will be

granted to named individuals in accordance with ethical

procedures governing the reuse of sensitive data. Specif-

ically, the following conditions must be met to obtain access

to the data: approval by the Department of Psychology and
York Neuroimaging Research Ethics Committees and a

suitable legal basis for the release of the data under GDPR.

3.4. Decoding using neurosynth

In addition to generating maps associated with a particular

term, Neurosynth can be used to generate a set of terms

frequently associated with a spatial map (Yarkoni et al., 2011).

This approach is used in Fig. 6 to decode patterns of connec-

tivity for the results of our semantic DMN and semantic con-

trol seeds. In presenting these results as word clouds, we

manually excluded terms referring to neuroanatomy (e.g.,

“inferior”). The size of each word in the word cloud relates to

the frequency of that term across studies.
4. Experiment 1 results

4.1. Behavioural results

We analysed the behavioural performance of the sample of 76

participants in the neuroimaging analysis. In addition to ac-

curacy and median response time, we computed response

efficiency by dividing response times by accuracy. This com-

posite score provides an overall performance measure for

functional connectivity analyses, accounting for any differ-

ences in theway inwhich participantsmay trade-off response

time and accuracy. A higher efficiency score indicates poorer

performance (but in brain analyses, the efficiency score was

inverted to aid the interpretation of the results, such that a

higher score corresponded to better performance). Behav-

ioural outliers were defined as scores ±2.5 standard deviations

from mean efficiency per condition and imputed with the

value of this cut-off. Table 1 provides descriptive statistics for

accuracy, response time and efficiency scores. A paired-

samples t-test revealed less efficient performance in the

summation condition than in the direct condition

(t(75)¼�8.15, p <. 001). The behavioural datawere z-scored for

the brain-behaviour analysis e box plots of response effi-

ciency before and after z-scoring are provided in the

supplementary materials (Figure S4). Despite the difference in

performance on the two conditions, an analysis of accuracy

and RT revealed that there were no outlying trials in either

condition (direct, summation; Figure S5).

4.2. Left semantic DMN seed

Better performance on the summation trials relative to the

direct semantic trials was associated with stronger intrinsic

connectivity between the semantic DMN seed (Fig. 4, left-hand

panel) and a set of regions in bilateral inferior frontal gyrus,

and left posterior inferior temporal gyrus (Fig. 4). Participants

with better summation tended to show this pattern of con-

nectivity more strongly, as shown in Fig. 4 (using a median

split of participants according to connectivity values). We

determined the network associated with these regions by

seeding them in an independent resting-state dataset. The

resulting pattern of connectivity strongly overlapped with the

MDN (Fig. 6), while decoding this pattern of connectivity using

Neurosynth yielded terms associated with cognitive control

https://neurovault.org/collections/6140
https://neurovault.org/collections/6140
https://osf.io/ehj7b/
https://doi.org/10.1016/j.cortex.2020.04.032
https://doi.org/10.1016/j.cortex.2020.04.032


Table 1 e Mean and standard deviation for accuracy, reaction time and response efficiency scores (after imputing outliers)
across 76 subjects for each experimental condition (direct and summation). Accuracy is given as a percentage of trials.
Response time is shown in milliseconds. Response efficiency was computed by dividing response time by accuracy.

Condition Accuracy Response Time Response Efficiency

Mean SD Mean SD Mean SD

Direct .86 .08 1618.76 327.46 1884.57 404.42

Summation .63 .12 2382.87 1425.23 3878.81 2274.37

Table 2 e Peak coordinates resulting from the connectivity analysis.

Seed Behaviour Connectivity p-FWE x y z Voxels

Semantic DMN summation > direct FP-mPFC (neg) <.001 4 66 18 986

RIFG-FP (pos) <.001 22 46 �12 896

LIFG-Precentral Gyrus (pos) .016 �62 2 14 328

pITG (pos) .017 �38 �34 �32 327

direct (main effect) FP-SFG (pos) <.001 8 62 18 1723

FP-insular (neg) <.001 22 46 �10 1123

Semantic Control Network summation > direct pCC (pos) .003 12 �44 8 441

LOC-AG (pos) .007 �42 �72 44 377

summation (main effect) pCC (pos) .003 �8 �46 10 437

LOC-AG (pos) .007 �44 �72 44 384
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(cf. word cloud, Fig. 6). These results therefore show that

stronger intrinsic connectivity between semantic DMN and

MDN regions was associated with better summation relative

to direct retrieval performance. The main effect of poorer

performance on the direct condition was associated with

similar patterns of connectivity (Fig. 4, right-hand panel).
Fig. 4 e Resting-state connectivity results for the semantic DMN

maps are fully saturated to highlight overlaps (dynamic range s

positive and negative connectivity associated with the contrast o

semantic map derived from Neurosynth (Yarkoni et al., 2011) in

efficiency (higher scores ¼ better performance) for the direct an

connectivity group and plotted for the two tasks and each clust

hand panel (red).
There were no significant main effects for the summation

condition.

In addition, stronger intrinsic connectivity between the

semantic DMN seed and left and right frontal pole (FP) was

associated with weaker performance on summation relative

to direct retrieval (Fig. 4). We determined the network
seed (seed pictured in left panel); p-FWE < .005, p < .017,

hown in Figs. 5 and 6, peak coordinates in Table 2). The

f summation > direct are shown in green (overlaid with the

blue); the z-scored reversed behavioural task response

d summation tasks is median-split into a high and low

er. The main effect of the direct task is shown in the right-

https://doi.org/10.1016/j.cortex.2020.04.032
https://doi.org/10.1016/j.cortex.2020.04.032


c o r t e x 1 2 9 ( 2 0 2 0 ) 3 5 6e3 7 5 365
associated with these regions by seeding them in an inde-

pendent cohort of resting-state data. The resulting pattern of

connectivity overlapped extensively with theDMN (Fig. 6), and

decoding these results using Neurosynth yielded terms asso-

ciated with the DMN (Fig. 6, right-hand panel). These results

show that stronger resting-state connectivity between se-

mantic DMN and other DMN regions was associated with

more efficient direct semantic retrieval, the condition thought

to be relatively automatic. The main effect of good perfor-

mance on the direct condition was associated with stronger

intrinsic connectivity to a similar large cluster in left and right

frontal pole extending into superior frontal gyrus (Fig. 4).

There were no significant main effects for the summation

condition.

4.3. Left semantic control seed

Having considered how connectivity from DMN varies with

behaviour on summation and direct retrieval conditions, we

describe parallel analyses for the semantic control network

seed. Better performance on summation than direct retrieval

was associated with stronger intrinsic connectivity between

the semantic control seed (Fig. 5, left-hand panel) and left

angular gyrus, and posterior cingulate cortex (Fig. 5). We

seeded the regions associated with better summation than

direct retrieval in an independent cohort of resting-state data.

The resulting pattern of connectivity strongly overlappedwith

the DMN (Fig. 6), while cognitive decoding of these results

using Neurosynth (Yarkoni et al., 2011) yielded terms associ-

ated with the DMN (Fig. 6, right-hand panel). These findings

again show that more efficient semantic summation was

associated with stronger intrinsic connectivity between se-

mantic control and DMN regions. The main effect of good

performance on the summation condition was associated
Fig. 5 e Resting-state connectivity results for the semantic cont

maps are fully saturated to highlight overlaps (dynamic range sh

of higher resting-state connectivity with the semantic control s

than the direct retrieval condition (represented in green and ov

(Yarkoni et al., 2011) in blue). The z-scored reversed behavioura

performance) for the direct and summation tasks is median-spli

two tasks and each cluster. The right-hand panel shows the m
with similar patterns of connectivity (Fig. 5). There were no

significant effects for the direct retrieval condition.

4.4. Summary of Experiment 1

We found that individuals with higher resting-state connec-

tivity from the semantic DMN to regions of the MDN hadmore

efficient semantic summation, while higher intrinsic con-

nectivity from semantic DMN to other DMN regions was

associated with better performance in the direct retrieval

condition. Similarly, higher resting-state connectivity from

the semantic control network to DMN was linked to better

performance in the summation condition. These results are

consistent with the view that both the DMN and the semantic

control network are relevant to semantic summation, and

that individuals who have efficient summation show stronger

intrinsic connectivity between these networks.

Further data is needed to establish if this pattern of con-

nectivity is specifically associated with summation e i.e.,

tasks that involve identifying overlap between multiple

weakly-related concepts e or, alternatively, if connectivity

betweenDMNandMDN is associatedwith better performance

on harder semantic tasks in general e including, for example,

the retrieval of weak versus strong associations in the absence

of summation. Vatansever et al. (2017) used canonical corre-

lation analysis to identify behaviourebrain associations in a

cohort of 160 participants who completed a resting-state scan

and a battery of semantic tasks. Relatively good performance

on the most demanding semantic tasks was accompanied by

greater separation between DMN and control network nodes,

implying broad cross-network connectivity is not generally

linked to better controlled semantic retrieval. Consequently,

the behavioural associations in the current study may be

specific to the semantic summation task. However,
rol seed (seed shown in left panel); p-FWE < .005, p < .017,

own in Figs. 5 and 6, peak coordinates in Table 2). Regions

eed associated with better performance on the summation

erlaid with the semantic map derived from Neurosynth

l task response efficiency (higher scores ¼ better

t into a high and low connectivity group and plotted for the

ain effect of efficient summation (red).
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Fig. 6 e Summary of results. The intrinsic connectivity (p-FWE < .005, p < .017) of the clusters resulting from the semantic

DMN seed for the contrast direct retrieval > summation demonstrates high overlap with the DMN (grey panel). The

summation > direct clusters resulting from seeding the semantic DMN have a large degree of overlap with the MDN (grey

panel), and for the semantic control network (SCN) seed for the same contrast, the results highly overlap with the DMN.

Word clouds were generated using the decoding tool in Neurosynth (Yarkoni et al., 2011): the semantic DMN seed results

revealed terms associated with default mode for direct > summation and cognitive control for summation > direct. The SCN

seed results revealed terms associated with default mode for summation > direct.
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Vatansever et al. placed seeds in specific cortical regions, as

opposed to taking whole networks as seeds, as in the current

study. Moreover, there are specific patterns of cross-network

connectivity associated with better semantic control

(Krieger-Redwood et al., 2016). In Experiment 2, we therefore

re-analysed the data reported by Vatansever et al. (2017) to

directly examine the behavioural relevance of the patterns of

connectivity highlighted in Experiment 1, linked to summa-

tion and direct retrieval. This analysis established whether

these connectivity patterns were associated with individual

differences in the efficiency of semantic control, by comparing

the retrieval of weak and strong associations. The weak as-

sociation task is thought to require more control over se-

mantic retrieval in the absence of a requirement to summate

multiple meanings.
Table 3 e Psycholinguistic variables for our semantic
battery by strength of association.

Strength of association

Strong Weak t Sig.

Mean (Standard error)

Word Length 6.43 (.39) 6.6 (.34) �.16 .873

Lexical Frequency 13564.8 (1887) 11233.6 (1805) .89 .374

Familiarity 6.02 (.09) 6.12 (.08) �.88 .381

Imageability 5.16 (.13) 4.96 (.13) 1.07 .287

Semantic Association 6.02 (.07) 3.32 (.10) 21.74 .000
5. Experiment 2

5.1. Picture-word matching task procedure

We re-analysed a picture-wordmatching task from a previous

study (Vantansever et al., 2017), which manipulated semantic

control requirements in a similar way to the summation task,

but without the requirement to summate the meanings of

multiple concepts. This task employed a three-alternative

forced-choice design: participants matched a probe picture

with one of three possible target words, pressing a button to

indicate the word that was most strongly associated with the
probe picture. We manipulated strength of association be-

tween the probe and target, resulting in strong (low control)

and weak (high control) trials. The trials were created using

associations derived from free association databases (e.g.,

Edinburgh Association Thesaurus), which is thought to be

more closely aligned to conceptual representations than

computer based methods of approximating semantic re-

lationships (De Deyne et al., 2016; Kenett et al., 2017; Kumar

et al., 2019). Strength of association was assessed using rat-

ings on a 7-point scale (from a different set of participants),

and differed significantly between conditions (Table 3). The

coloured pictures and words were also rated for familiarity

using a 7-point scale, and lexical frequency for the words was

obtained from the SUBTLEX-UK database (van Heuven,

Mandera, Keuleers, & Brysbaert, 2014). We also computed

word2vec scores for the probeetarget relationships.Word2vec

https://doi.org/10.1016/j.cortex.2020.04.032
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(Mikolov, Chen, Corrado, & Dean, 2013) uses word co-

occurrence patterns in a large language corpus to derive se-

mantic features for items, which can then be compared to

determine their similarity. The word2vec score for the

probeetarget relationship differs significantly (t(26) ¼ 4.24,

p < .001) between the high (mean w2v ¼ .3, SD ¼ .15) and low

(mean w2v ¼ .2, SD ¼ .11) conditions. Therefore, our stimuli

have been validated using both ratings from participants, and

using a computer-based algorithm. Additional psycholin-

guistic data were taken from the MRC psycholinguistic data-

base (Coltheart, 1981;Wilson, 1988). Therewere no differences

between strong and weak associations in familiarity, word

length, lexical frequency or imageability (Table 3).

The stimuli were selected from a larger set of words and

photographs used in previous experiments (Davey et al., 2015;

Krieger-Redwood et al., 2015). The pictures were photographs

from the internet and re-sized (200 pixels, 72 dpi). The dis-

tractors were unrelated to the probe andwere targets on other

trials. We presented 60 coloured pictures of objects (e.g., dog),

paired with 60 strongly-related (e.g., bone) and 60 weakly-

related (e.g., ball) written words, resulting in 120 trials.

These trials were presented in four blocks of thirty trials each,

with both conditions interspersed in each block. The order of

trials within the blocks was randomised across subjects. The

blocks were interleaved with other types of semantic judge-

ments and non-semantic judgements outside the scope of this

report).

Each trial started with a blank screen for 500 msec. The

response options were subsequently presented at the bottom

of the screen for 900 msec (with the three options aligned

horizontally, and the target in each location equally often).

Finally, the probe was centrally-presented at the top of the

screen. The probe and choices remained visible until the

participant responded, or for a maximum of 3 s. A schematic

of the trial structure can be found on the right-hand panel of

Fig. 2, and Table 4 summarises behavioural results.

5.2. Resting-state fMRI analysis

We computed seed-to-voxel correlationmaps, using the same

seed networks as in Experiment 1 (semantic DMN and se-

mantic control network; Fig. 3). For the second-level analysis,

a nuisance regressor containing the mean motion (measured

in framewise displacement) for each participant was entered

as an explanatory variable (EV). We extracted the correlation
Table 4 e The mean and standard deviation of accuracy,
reaction time and efficiency score (after imputing outliers)
across 191 subjects in the semantic picture-wordmatching
(PWM) task (strong and weak associations). Accuracy is
given as a percentage of trials. Response time is shown in
milliseconds. Efficiency is the ratio of a participant's
response time divided by accuracy (greater ¼ poorer
performance).

Task Accuracy Reaction Time Response Efficiency

Mean SD Mean SD Mean SD

PWM Strong .95 .05 1315.98 173.28 1380.99 210.04

PWM Weak .77 .09 1781.80 202.88 2352.63 485.30
values from each seed (DMN, SCN) for each participant within

the clusters associated with summation and direct retrieval in

Experiment 1 (see Fig. 7a). Since our aim in this analysiswas to

establish if the summation effects found in Experiment 1

could be explained in terms of semantic control demands, we

chose not to correct the analyses for the number of clusters

tested (i.e., the analysis was relatively lenient, to maximise

the chances of recovering an association between connectiv-

ity and semantic control demands). Given the large sample

size, and the ROI-to-ROI nature of the analysis, a null result

would support the proposal that the pattern of connectivity

described in Experiment 1 is specific to summation.

For completeness, we also ran a whole-brain seed-to-voxel

second-level analysis with the means-centred efficiency

scores for strong and weak associations (inversed, such that

higher scores indicated better performance, with outliers 2.5

SD away from the mean imputed to these cut-off values), and

a nuisance regressor containing the mean motion (measured

in framewise displacement) for each participant as explana-

tory variables (EVs). This analysis showed that stronger

intrinsic connectivity from the semantic DMN seed to L and R

occipitotemporal gyrus was associated with better perfor-

mance on strong than weak associations. Also greater con-

nectivity from the semantic DMN seed to L and R medial PFC

(also in DMN) was correlated with better performance on

strong associations, thought to be retrieved relatively auto-

matically. No correlations with the task were found for the

semantic control network seed. These results are reported in

supplementary materials.
6. Results

6.1. Behavioural results

Accuracy and response time for correct responses were

recorded and an efficiency score was calculated for each

participant in each condition by dividing response times by

accuracy (see Table 4). A higher efficiency score indicates

lower performance (note: in brain analyses, this efficiency

score was inverted to aid the interpretation of the results,

such that a higher score corresponded to better performance).

Behavioural outliers were defined as ±2.5 standard deviations

from the mean of each condition and were imputed with this

cut-off values. A paired-samples t-test revealed less efficient

performance for the weak than strong associations

(t(190) ¼ �39.85, p < .001).

6.2. Connectivity results

We performed a repeated-measures ANCOVA using mean-

centred efficiency scores for weak and strong associations as

predicted variables (inversed, such that higher scores indi-

cated better performance), and the mean-centred connectiv-

ity values between the seeds (left semantic DMNand semantic

control) and each cluster as covariates. All of the cluster re-

gions are shown in Fig. 7. This analysis yielded two main re-

sults: (1) a significant main effect of cluster, reflecting a

general association between worse semantic performance

and high connectivity from the DMN seed to Cluster 2 in right

https://doi.org/10.1016/j.cortex.2020.04.032
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Fig. 7 e A) Individual clusters from Experiment 1: DMN cluster 1 was associated with lower performance in the summation

task compared to the direct condition, shown in blue; DMN clusters 2e4 were associated with better performance on the

summation task, and are shown in orange-red. Semantic control network (SCN) clusters 1 and 2 were associated with better

performance on the summation task. B) Summary of the results from Experiment 2. Two clusters show an association with

picture-word matching performance (a main effect of connectivity for the RIFG cluster, and an interaction between

connectivity and strength of association for the LIFG cluster). C) Inverted mean-centred response efficiency (i.e., high

scores ¼ good performance) for strong and weak associations shown using a median-split into high and low connectivity

groups for the two significant clusters emerging from the ANCOVA. The bottom right-hand corner contains the task

information; correct answers are underlined.
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IFG (F(1, 184) ¼ 4.024, p ¼ .046, partial ƞ2 ¼ .021), i.e., no dif-

ferential effect between strong and weak associations; and (2)

an interaction between associative strength and connectivity
Table 5 e Results of a repeated measures ANCOVA using
the connectivity value from the seeds (left semantic DMN
and left semantic control) to each cluster as covariates and
task condition (weak and strong associations) as
dependent variables; *p < .05.

Cluster Main Effect site � PWM interaction

df F sig F sig

DMN to

RL Frontal Pole 1, 184 .003 .957 1.73 .19

R Inferior Frontal

Gyrus

1, 184 4.024 .046* .5 .48

L Inferior Frontal

Gyrus

1, 184 2.247 .136 4.018 .046*

L poster Inferior

Temporal

Gyrus

1, 184 .397 .53 .178 .674

SCN to

RL posterior

cingulate

cortex

1, 184 .131 .718 .13 .719

L Angular Gyrus 1, 184 .375 .541 .422 .517
from the DMN seed to Cluster 3 in left IFG (F(1, 184) ¼ 4.018,

p ¼ .046, partial ƞ2 ¼ .021). Table 5 provides results of the

repeated measures ANCOVA for all clusters.

To further interpret these results, we computed the effect

of strength of association as a difference score and calculated

a (two-tailed) partial correlation between association strength

and the significant cluster from the ANCOVA model that

interacted significantly with task performance. The difference

in performance between weak and strong associations was

correlated with connectivity between the DMN seed and

cluster3-LIFG (r ¼ �.146, p ¼ .046; Fig. 7c), demonstrating that

stronger connectivity between DMN and LIFG was associated

with poorer performance on weak than strong associations.

We conducted a further analysis, on a subset of the par-

ticipants (n ¼ 174) for whom we had Ravens Advance Pro-

gressive Matrices scores, to assess the contribution of

intelligence (RAPM) to performance on the PWM task. This

established a significant Pearson correlation between perfor-

mance on the weak association tasks and RAPM (r(174)¼�.24,

p ¼ .002), but no relationship between strong associates and

RAPM (r(174) ¼ �.116, p ¼ .13; Figure S7). Consequently, in

Experiment 2, performance on the weak association task

might reflect a contribution from general intelligence.

These results complement the findings of Experiment 1, by

establishing which effects in that study were specific to
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semantic summation, and which might be related to diffi-

culty. While cross-network connectivity from the semantic

control seed to DMN regions (PCC andAG)was associatedwith

better summation performance, there was no evidence that

this effect extended to other hard semantic tasks (e.g., weak

associations). Moreover, while semantic DMN connectivity to

LIFG and RIFG was associated with relatively better perfor-

mance on summation trials and poorer direct retrieval, in

Experiment 2, DMN to LIFG connectivity was associated with

poorer performance on the more difficult weak association

trials, and DMN to RIFG connectivity was associated with

poorer performance on both strong and weak trials. These

findings support the view that cross-network connectivity

supports semantic summation, but is associated with poorer

performance on non-summation tasks, perhaps particularly

when these tasks require more control. In addition, cross-

hemisphere connectivity from left DMN regions to a right-

hemisphere site implicated in control supports summation

but is associated with poorer direct semantic retrieval.
7. Discussion

This study examined the relationship between individual

performance on controlled semantic summation tasks,

compared with direct semantic retrieval, and the intrinsic

connectivity of the default mode and semantic control net-

works. We found higher intrinsic connectivity from the se-

mantic DMN to regions of the MDN related to relatively better

performance in the summation condition, while higher con-

nectivity from the semantic DMN to other regions of the DMN

related to better performance in the direct retrieval condition.

Similarly, higher resting-state connectivity from the semantic

control network to the DMNwas linked to better performance

in the summation condition. These results are consistent with

the view that both the DMN and the semantic control net-

works are relevant to processes engaged in our semantic

summation manipulation e such as retrieval of non-

dominant aspects of meaning, merging, and inhibition of

irrelevant but equally associated concepts; and that in-

dividuals who are more efficient at engaging these processes

have stronger intrinsic connectivity between these networks.

Furthermore, our result of cross-network integration did not

generalise to other difficult semantic tasks, where, in contrast

maximal separation of networks was linked to better perfor-

mance (Experiment 2).

The controlled semantic summation task requires the

ability to integrate weak and disparate information from

multiple concepts in order to identify the relevant semantic

link. For this reason, wemight expect a role of both the DMNe

which is thought to support the integration of information

(Graves et al., 2010; Tyl�en et al., 2015; Vatansever, Menon,

Manktelow, Sahakian, & Stamatakis, 2015), and the semantic

control network e which is implicated in the capacity to

recover weak yet taskerelevant associations (Jefferies, 2013;

Lambon Ralph et al., 2017; Noonan et al., 2013; Whitney

et al., 2011). For efficient semantic summation, a greater

coupling of these two networks may be important. Interest-

ingly, this effect did not generalise to another control-

demanding semantic task that involved identifying weak
semantic associations between a picture probe and word

targets, without a need to integratemultiple probewords. This

suggests that the relationship between performance and

cross-network connectivity was specific to summation.

Relatively little is known about the complex relationship

between semantic performance and individual differences in

connectivity between DMN and control regions. Vatansever

et al. (2017) used canonical correlation analysis to identify

distinct patterns of connectivity associated with specific

behavioural profiles across a battery of semantic tasks.

Greater separation between semantic control nodes (posterior

IFG and pre-supplementary motor area) and DMN regions

(angular gyrus and posterior cingulate cortex) was linked to

better performance on control-demanding semantic tasks,

including the weak versus strong associations we used in

Experiment 2, and also a demanding feature-matching task.

We re-analysed this data in Experiment 2, using seed-to-voxel

connectivity analysis to interrogate the same seeds and

clusters linked to summation in Experiment 1. Lower con-

nectivity between the DMN and executive regions was linked

to better performance across both tasks for RIFG and better

weak than strong associations for LIFG. These findings are in

line with our previous findings suggesting greater functional

separation at rest betweenDMNand control regions is linked to

better performance on demanding semantic tasks (Vatansever

et al., 2017). Therefore, the results of our two experiments

provide an interesting dissociation: while coupling of the DMN

and control regions is detrimental to one aspect of semantic

control (the controlled retrieval of weak associations from

single cues without summation), it is beneficial to the capacity

to integrate disparate information to form a semantically

coherent concept.

The study by Vatansever et al. (2017) demonstrates an as-

sociation between relatively good task performance and gen-

eral separation between DMN and control networks at rest.

This is also the case across other cognitive domains, where

maximal separation between control (i.e., FPN) and DMN

networks is beneficial as task demands increase (Anticevic,

Repovs, Shulman, & Barch, 2010; Esposito et al., 2006; Lamp,

Alexander, Laycock, Crewther, & Crewther, 2016; McKiernan,

Kaufman, Kucera-Thompson, & Binder, 2003). Indeed, sepa-

ration of DMN-FPN has been shown to mediate the relation-

ship between intelligence and task performance (Sripada,

Angstadt, Rutherford, & Taxali, 2019): flexible separation of

these networks is key to good performance (i.e., in high per-

formers the networks work in close concert in low-demand

tasks, and maximally separate when demands increase). Our

study used the semantic association task to control for any

effects that may be driven by difficulty in the summation task

- performance on the weak associations was correlated with

intelligence (RAPM), and in line with the previous literature,

maximal separation of control and DMN networks was linked

to better performance. Furthermore, a recent task-based fMRI

study by Japardi, Bookheimer, Knudsen, Ghahremani, and

Bilder (2018) used both the Alternate Uses Task (AUT) and

the RAT and while their results remained largely unchanged

with the addition of IQ as a covariate, the activation in left

pIFG (AUT), right PMC (AUT) and right pIFG (RAT) was attrib-

utable to IQ e a finding that we have replicated in our results:

the summation results in left and right frontal cortexwere not
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specific to summation, but were also linked to performance on

the semantic association task (which correlated with

intelligence).

Better performance on the controlled semantic summa-

tion task was linked to increased communication between

control and DMN networks. This finding adds to other cur-

rent research which has shown that selective patterns of

cross-network connectivity can be associated with efficient

semantic cognition. For example, stronger coupling of pos-

terior cingulate cortex within DMN with a region of ventral

attention network in dorsolateral prefrontal cortex was

linked to stronger goal-driven semantic retrieval, both dur-

ing a task, and when performance outside the scanner was

associated with intrinsic connectivity at rest (Krieger-

Redwood et al., 2016). Although DMN and MDN are typi-

cally anti-correlated (Fox et al., 2005; Fox, Zhang, Snyder, &

Raichle, 2009; Smith et al., 2009; Wig, 2017), the ability to

bring specific parts of them together might be beneficial for

aspects of semantic cognition e including goal driven

retrieval, and semantic summation. The specific brain re-

gions implicated in patterns of cross-network connectivity

associated with good performance might vary depending on

the task. Despite these differences between studies, this

work commonly suggests that while the DMN is primarily

associated with automatic semantic retrieval (Binder &

Desai, 2011; Davey et al., 2016), this network is not irrele-

vant to controlled semantic retrieval (Davey et al., 2016;

Krieger-Redwood et al., 2016). Furthermore, studies of

divergent thinking have demonstrated that highly-creative

individuals have greater connectivity between DMN and

control regions (Beaty, Benedek, Silvia, & Schacter, 2016;

Beaty et al., 2014). There is a growing body of research

demonstrating that rather than common DMN deactivation

in response to external demands (e.g., a task), DMN regions

reorganise and work in concert with ‘on-task’ networks

(e.g., Fransson, 2006; Piccoli et al., 2015). Similarly, DMN

might change its connectivity in the service of successful

semantic cognition: for example, by coupling with the se-

mantic control network to support the summation of mul-

tiple inputs in one instance, and by coupling with other

DMN regions to support relatively automatic retrieval of

strongly-encoded information (Krieger-Redwood et al.,

2016).

Performance on summation trials may involve some form

of conceptual expansion - the ability to widen conceptual

structures (Abraham et al., 2012; Ward, 1994) e and many of

our results overlap with previous task-based fMRI studies

using conceptual expansion tasks. For example, Abraham

et al. (2012) used an alternative uses task requiring partici-

pants to generate unusual responses to well-known objects

(e.g., shoe e flowerpot; this requires conceptual expansion)

and contrasted this with a divergent thinking task with low

demands in which participants had to name items related to a

location (e.g., office). Conceptual expansion recruited LIFG and

pITG e much like the RS-summation relationship we uncov-

ered for these areas. Furthermore, pCC, AG and frontal pole

were engaged by divergent thinking, and our summation-

connectivity results overlap with these results (except for

frontal pole which was found to be more related to direct

retrieval). This suggests that summation may engaged
processes such as divergent thinking and conceptual expan-

sion and that our RS-summation paradigm may not be sen-

sitive to sufficiently separate these processes.

Our results also find many parallels with previous task-

based fMRI studies manipulating varying aspects of creative

thought. For example, Marron et al. (2018) separated the

spontaneous associative processes versus the executive top-

down control (e.g., switching between ideas, inhibition of

mundane/inappropriate ones) processes of creative thought.

They used chain free association to localise spontaneous free

association, with no requirement for control (i.e., participants

were encouraged to associatewhatever came tomind, with an

emphasis on the fact that there are no right or wrong an-

swers). This was compared with control conditions (semantic,

phonological fluency and episodic memory tasks), which

involved goal-directed search triggered by specific selection

criteria. While the tasks used in this experiment differ from

our summation task in many ways (e.g., the summation task

requires no production, and participants are required to not

only integrate butmonitor and select stimuli), the results from

Marron and colleagues can potentially help to elucidate the

contribution of processes reflected by our results. For

example, our DMN e right and left frontal pole result linked to

better performance on the direct (easy) condition overlaps

withMarron et al.'s results inmPFC and superior frontal gyrus,

areas found to be active for free association fluency (i.e., un-

constrained search in the conceptual store). Furthermore,

dorsal pCC was engaged by semantic distance e therefore our

pCC result (albeit, ventral to theirs) may reflect the semantic

distance between probes and targets in the summation

paradigm. Our study uncovered a posterior LIFG site, a site

consistently implicated in selection from amongst competing

alternatives (Barde & Thompson-Schill, 2002; Demb et al.,

1995; Kan & Thompson-Schill, 2004; Thompson-Schill et al.,

1997) e accordingly, Marron et al. demonstrated that themore

flexible participants were in their chain free association re-

sponses, themore reduced their LIFG activationwas. Moreover,

a meta-analysis of creative thought grouped studies into

combination or unusual generation tasks, and found that

combination tasks elicited more activation in areas such as

rostrolateral PFC, LIFG-MFG, RIFG, insula, pMTG and posterior

parietal regions (e.g., AG). The summation task we used re-

quires participants to combine concepts, and many of our

results overlap with those from this meta-analysis (Gonen-

Yaacovi et al., 2013), suggesting that semantic cognition and

creativity engage some overlapping processes and therefore

brain regions. This overlap between task-based and RS-

behaviour analyses provides convergence of methods,

demonstrating that areas activated in task-based fMRI can

also provide a neural marker (identifiable through RS-

behaviour analyses), as well as integration across disciplines

(e.g., semantic, creativity).

Our study used a modified version of the summation

priming task that was previously created by Beeman and

colleagues to test their hypothesis that the right hemisphere is

involved in coarse semantic coding, which more readily al-

lows the detection of distant semantic relations (Beeman,

1998; Beeman et al., 1994). Our study used left-hemisphere

seeds, such that right hemisphere clusters could be unam-

biguously interpreted as greater cross-hemispheric
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connectivity. We identified a region, in right anterior IFG,

whose resting-state connectivity to the left semantic DMN

seed was associated with relatively good performance on

summation in the context of poorer performance in the direct

condition. This is potentially consistent with the view that

summation benefits from RH engagement. This pattern did

not extend toweak associations, which also require control. In

fact, cross-hemispheric connectivity was associated with less

efficient direct semantic retrieval, potentially consistent with

the recent observation that the semantic control network is

strongly left-lateralised and that participants with stronger

left-lateralisation of this component of semantic cognition

show more efficient (direct) controlled semantic retrieval

(Frishkoff, 2007; Gonzalez Alam et al., 2018, 2019; Noonan

et al., 2013). Our study aligns well with the previous litera-

tureemost of our results fall within the left hemisphere, as do

those of previous studies of a similar nature (e.g., RAT, chain

FA, conceptual expansion), for example one study used a WM

task to remove the component ofWM from divergent thinking

(and conceptual expansion) and found that only WM activated

the right hemisphere (Abraham et al., 2012). If the summation

task does indeed involve conceptual expansion, then Bee-

man's RH theory is unable to account for the dominance of the

left hemisphere in tasks designed to remove other processes

that likely contribute to the resolution of these tasks (e.g.,

working memory).

A recent MEG study of semantic cognition that manipu-

lated semantic control using association strength in a simple

related/unrelated paradigmmay help shed some light on the

temporal dynamics underlying the ability to complete both

the summation and the associative judgment tasks. Teige

et al. (2018) reported sustained activation in ATL from the

onset of the target word for both strong and weak associa-

tions, until around 400 msec when ATL activation increased

more for strong associates. Meanwhile, the left pMTG and

IFG were maximally active for the weak condition from

around 60 msec post target onset, suggesting early recruit-

ment to sustain appropriate activation. This suggests that

there is a continual reciprocal flow of information between

brain areas falling within DMN and control networks. For

successful completion of the summation paradigm, the DMN

and control networks may engage in continual communi-

cation to form an integrated concept that is relevant to cur-

rent demands.

In this study, we elected to investigate how connectivity

from whole network seeds was implicated in behavioural

performance. Therefore, we cannot rule out the possibility

that specific regions within our seeds may have driven the

resulting clusters. However, by reducing our networks to

exclude parts of the network that are not semantically rele-

vant, and further reducing them to the left hemisphere only

e we have taken a small step in limiting the size of the

network seeds. This was a pragmatic approach, allowing us

to investigate within and between network connectivity, as

well as cross-hemispheric connectivity. Although using key

network nodes would have allowed for greater specification,

it may have come with the cost of missing relevant brain

areas. While there are limitations to our methods, when

considered alongside previous literature, the limitations can

be mitigated. Furthermore, while our study did not use task-
based fMRI, and is thereby unable to draw specific conclu-

sions based on task elicited activation, our findings mirror

results obtained by task-based fMRI investigations; thereby

demonstrating an important link between ‘on-task’ brain

activation and associations between the intrinsic functional

architecture of the cortex and individual differences in

cognition (in this case the ability for controlled semantic

summation). Further investigation would benefit from

investigating the temporal dynamics associated with inte-

grating multiple weakly related concepts to form a coherent

concept.

In conclusion, this study indicates that cross-network as

well as cross-hemispheric connectivity may be important for

semantic summation but not for other forms of controlled

semantic retrieval. Good performance on the summation task

was associated with stronger connectivity between the DMN

and semantic control network, which may interact to retrieve

weak associations and integrate disparate semantic infor-

mation to make the required link. The ability to integrate in-

formation is likely to be an aspect of everyday semantic

cognition, where items often occur in rich contexts e as well

as in the use of, for example, metaphor, and complex

discourse. While the previous task-based fMRI literature has

implicated certain brain regions in aspects of semantic and

creative cognition, the current study has demonstrated how

connectivity between these brain regions is linked to better per-

formance on tasks requiring the integration of weakly-related

concepts to form a coherent concept. We have demon-

strated that the intrinsic functional architecture of the brain is

linked to the ability to efficiently integrate weakly associated

concepts in the face of pre-potent distractors, and that this

architecture mirrors the findings of task-based fMRI studying

similar processes.
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